This paper describes the abilities of parametric iterative design with collaboration of robotic fabrication workflow in structural optimization of the nodes (joints) of special grid-based structure. Experimental structure built in robotic fabrication workshop – (the Dynamo-BUILD workshop at the 2016 International Conference on Robotic Fabrication in Architecture, Art, and Design Conference in Sydney, Australia) - is taken as a case study. In this study, the complexity of structure form combined of joints and members is resolved and developed through parametric design algorithms. Focusing on joints, the case gives workflow structure methods of design and fabrication that transfer the level of mass simplicity production to iterative complexity production .Furthermore, these methods also respect the manufacturing processes and material properties of nodes. The structure was fabricated using robotic fabrication techniques after design optimization using parametric computationally driven manufacturing processes. In order to move from the computational design environment to joint fabrication, custom robotically process was developed to assemble making full structure series of nodes which saved time; cost; and exerted effort if compared to the traditional mass production processes.


Robotic fabrication. Parametric Optimizations. Computational design. Joinery structure. Algorithms


Architecture | Arts and Humanities | Education | Engineering



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.