Ride comfort, eight DOF full car model, MR damper, ANFIS, PID


Acoustics, Dynamics, and Controls | Applied Mechanics | Controls and Control Theory | Navigation, Guidance, Control, and Dynamics


Suspension system design is an important challenging duty that facing car manufacturers, so the challenge has become to design the best system in terms of providing ride comfort and handling ability under all driving situations. The goal of this paper is to provide assistance in enhancing the effectiveness of the suspension system. A full car model with eight Degrees Of Freedom (DOF) was developed using MATLAB/Simulink. Validation of the Simulink model was obtained. The model was assumed to travel over a speed hump that has a half sine wave shape and amplitude that changing from 0.01 to 0.2 m. The vehicle was moving with variable speeds from 20 to 120 km/h. Magneto Rheological (MR) damper was implanted to the model to study its effect on ride comfort. Adaptive-Network-based Fuzzy Inference System (ANFIS) was used to find the optimum voltage value applied to the MR damper, to skip the hump at least displacement. This network uses road profile and the vehicle speed as inputs. A Proportional Integral Derivative (PID) controller has been used to deal with potential disturbances that may affect the obtained voltage by the ANFIS. A comparison of the results for passive suspension system and model with MR damper, and system with and without PID controller, are illustrated. Results show that the MR damper gives significant improvements of the vehicle ride performance over the passive suspension system, and the PID increases the effectiveness of the system to skip the disturbance with minimal damage.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.