
Architecture and Planning Journal (APJ) Architecture and Planning Journal (APJ)

Volume 28 Issue 3 ASCAAD 2022 - Architecture
in the Age of the Metaverse – Opportunities and
Potentials
ISSN: 2789-8547

Article 14

March 2023

AFFORDABLE COMPUTATION FOR ARCHITECTURE AFFORDABLE COMPUTATION FOR ARCHITECTURE

ANTÓNIO LEITÃO
INESC-ID/Instituto Superior Técnico, University of Lisbon, Portugal, antonio.menezes.leitao@ist.utl.pt

RENATA CASTELO-BRANCO
INESC-ID/Instituto Superior Técnico, University of Lisbon, Portugal, renata.castelo.branco@ist.utl.pt

INÊS CAETANO
INESC-ID/Instituto Superior Técnico, University of Lisbon, Portugal, ines.caetano@ist.utl.pt

Follow this and additional works at: https://digitalcommons.bau.edu.lb/apj

 Part of the Architecture Commons, Arts and Humanities Commons, Education Commons, and the

Engineering Commons

Recommended Citation Recommended Citation
LEITÃO, ANTÓNIO; CASTELO-BRANCO, RENATA; and CAETANO, INÊS (2023) "AFFORDABLE
COMPUTATION FOR ARCHITECTURE," Architecture and Planning Journal (APJ): Vol. 28: Iss. 3, Article 14.
DOI: https://doi.org/10.54729/2789-8547.1209

https://digitalcommons.bau.edu.lb/apj
https://digitalcommons.bau.edu.lb/apj/vol28
https://digitalcommons.bau.edu.lb/apj/vol28/iss3
https://digitalcommons.bau.edu.lb/apj/vol28/iss3
https://digitalcommons.bau.edu.lb/apj/vol28/iss3
https://digitalcommons.bau.edu.lb/apj/vol28/iss3/14
https://digitalcommons.bau.edu.lb/apj?utm_source=digitalcommons.bau.edu.lb%2Fapj%2Fvol28%2Fiss3%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/773?utm_source=digitalcommons.bau.edu.lb%2Fapj%2Fvol28%2Fiss3%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/438?utm_source=digitalcommons.bau.edu.lb%2Fapj%2Fvol28%2Fiss3%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/784?utm_source=digitalcommons.bau.edu.lb%2Fapj%2Fvol28%2Fiss3%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.bau.edu.lb%2Fapj%2Fvol28%2Fiss3%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.54729/2789-8547.1209

AFFORDABLE COMPUTATION FOR ARCHITECTURE AFFORDABLE COMPUTATION FOR ARCHITECTURE

Abstract Abstract
Current architectural requirements prioritize the need to minimize the ecological footprint. By taking
advantage of computational design approaches like Algorithmic Design (AD), architects can enhance their
design processes with analysis, optimization, and visualization mechanisms, which are critical to explore
design solutions that meet this need. However, these mechanisms are also highly time- and resource-
consuming, often implying a quality tradeoff or the acquisition of High-Performance Computing (HPC)
machines. The latter are not yet affordable for most design studios but, fortunately, they can be contracted
as a service. This paper evaluates the impact of computation as a service in architecture and, more
specifically, the remote use of HPC for AD, with the aim of reducing the time and costs associated with
computationally expensive processes. A set of experiments were made involving analysis, optimization,
and rendering of a selected case study. Results indicate that HPC services are advantageous, particularly
when performing embarrassingly parallelizable tasks such as rendering. However, some challenges
remain, namely the required expertise.

Keywords Keywords
Algorithmic Design; High-Performance Computing; Design Optimization; Performance Analysis;
Visualization.

This article is available in Architecture and Planning Journal (APJ): https://digitalcommons.bau.edu.lb/apj/vol28/
iss3/14

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/14
https://digitalcommons.bau.edu.lb/apj/vol28/iss3/14

AFFORDABLE COMPUTATION FOR ARCHITECTURE

ANTÓNIO LEITÃO, RENATA CASTELO-BRANCO, AND INÊS CAETANO

INESC-ID/Instituto Superior Técnico, University of Lisbon, Portugal

antonio.menezes.leitao@ist.utl.pt

renata.castelo.branco@ist.utl.pt

ines.caetano@ist.utl.pt

ABSTRACT

Current architectural requirements prioritize the need to minimize the ecological footprint. By taking

advantage of computational design approaches like Algorithmic Design (AD), architects can enhance

their design processes with analysis, optimization, and visualization mechanisms, which are critical

to explore design solutions that meet this need. However, these mechanisms are also highly time- and

resource-consuming, often implying a quality tradeoff or the acquisition of High-Performance

Computing (HPC) machines. The latter are not yet affordable for most design studios but, fortunately,

they can be contracted as a service. This paper evaluates the impact of computation as a service in

architecture and, more specifically, the remote use of HPC for AD, with the aim of reducing the time

and costs associated with computationally expensive processes. A set of experiments were made

involving analysis, optimization, and rendering of a selected case study. Results indicate that HPC

services are advantageous, particularly when performing embarrassingly parallelizable tasks such as

rendering. However, some challenges remain, namely the required expertise.

Keywords: Algorithmic Design; High-Performance Computing; Design Optimization; Performance

Analysis; Visualization.

 ملخص

الأولوية للحاجة إلى تقليل البصمة البيئية. من خلال الاستفادة من مناهج التصميم الحسابي مثل تعطي المتطلبات المعمارية الحالية

الرؤية، والتي ات تقنيالتصميم الخوارزمي، يمكن للمعماريين تعزيز عمليات التصميم الخاصة بهم من خلال آليات التحليل والتحسين و

الحاجة. ومع ذلك، فإن هذه الآليات أيضًا تستهلك الكثير من الوقت والموارد، تعد ضرورية لاستكشاف حلول التصميم التي تلبي هذه

مما يعني في كثير من الأحيان مقايضة الجودة أو الاستحواذ على آلات الحوسبة عالية الأداء. وبالرغم من عدم توفر آلات الحوسبة

 الحوسبة"يمكن التعاقد عليها كخدمة. تقي ِّم هذه الورقة تأثير عالية الأداء في متناول معظم استوديوهات التصميم حتى الآن لحسن الحظ

بهدف ،لات الحوسبة عالية الأداء فى التصميم المعمار في الهندسة المعمارية ، وبشكل أكثر تحديداً، الاستخدام عن بعُد لآ "كخدمة

تقليل الوقت والتكاليف المرتبطة بالعمليات الحسابية باهظة الثمن. تم إجراء مجموعة من التجارب التي تشمل التحليل والتحسين

مفيدة، لا سيما عند أداء مهام متوازنة آلات الحوسبة عالية الأداء النتائج إلى أن خدمات وقد أشارتدراسة حالة مختارة. التمثيل ل

 الخبرة المطلوبة. وتحديدا مثل العرض. ومع ذلك، لا تزال هناك بعض التحدياتبشكل محرج

 .التصميم الخوارزمى، آلات الحوسبة عالية الأداء، تحسين التصميم، تحليل الأداء، تقنيات الرؤية الكلمات المفتاحية:

1

LEITÃO et al.: AFFORDABLE COMPUTATION FOR ARCHITECTURE

Published by Digital Commons @ BAU, 2023

1. INTRODUCTION

Architecture must respond to the ever evolving social and environmental demands, such as

the growing awareness on the industry’s ecological footprint (Boeck et al., 2015; Dillen et al.,

2020). By taking advantage of new digital tools and computation-based design approaches,

architects have been increasingly exploring design solutions that meet these demands (Kolarevic,

2005). Algorithmic Design (AD) is one such approach (Caetano et al., 2020) that facilitates the

integration of analysis and optimization mechanisms since early design stages. This not only

provides architects with a better grasp of their designs’ behavior (Figliola and Battisti, 2021;

Henriksson and Hult, 2015; Oxman, 2008), but also critically helps them orient the design process

in a more informed manner.

Nevertheless, analysis and optimization tasks are typically highly time- and resource-

consuming, often implying a quality tradeoff. A straightforward solution for this problem is the

use of High-Performance Computing (HPC) resources (Isard et al., 2007; Lin et al., 2021). Core

count is one of the determining factors of computer performance and, while the first Central

Processing Unit (CPU) invented only had one core to run one tasks, today we expect computers

to work on multiple tasks simultaneously. To do so, as well as to handle resource-intensive

programs, CPUs have evolved towards multi-cores. Portable computers these days typically have

CPUs with four to eight cores, which allows for the computation of around 1011 operations per

second. High-end desktop workstations go further by combining two or four CPUs in one machine,

which elevates the number of allowed operations per second to around 1013. Supercomputers take

this concept to the next level by offering hundreds or thousands of CPUs, reaching 1017 operations

per second.

Unfortunately, only a small fraction of architectural studios worldwide can afford the kind

of HPC described above, which limits the latter’s potential benefits for nowadays architectural

practice, particularly, in solving design optimization problems, which are critical to reduce the

ecological impact of the industry. To promote better architecture for all, improving life quality

while mitigating the industry’s environmental footprint, computation must become affordable to

anyone and anywhere. With this goal in mind, this research presents the results of a field report

evaluating the potential performance benefits of HPC for AD.

2. METHODOLOGY

HPC is advantageous to reach architectural solutions with higher indoor environmental

quality and reduced ecological footprints but the access to HPC machines is still limited. This

research addresses this problem by evaluating the remote use of HPC in current AD practices

using the following methodology:

1. Investigating HPC methods and their potential applications in architecture.

2. Identifying the benefits and challenges of remote HPC for architectural design.

3. Performing a set of experiments for multiple design tasks using a supercomputer to (a) validate

the proposed hypothesis regarding time and cost gains, and (b) find ways to surpass the

challenges encountered.

4. Analyzing the advantages obtained and challenges faced during the experiments and proposing

guidelines for future use.

5. Drawing conclusions on the findings and forecasting future research paths.

In the following sections we elaborate on each of these tasks.

3. COMPUTATION IN ARCHITECTURE

The emergence of computation-based tools triggered new design approaches, such as AD

(Caetano et al., 2020), that combine the computational power of machines with the architects’

creative potential (Terzidis, 2004). Due to its algorithmic nature, AD allows automating repetitive

and time-consuming design tasks, facilitates design changes, and increases design flexibility.

Therefore, in addition to reducing the time and effort spent in testing new solutions, and thus

increasing design space exploration, AD makes it possible to deal with higher levels of design

complexity involving multiple design constraints.

2

Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 14

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/14
DOI: 10.54729/2789-8547.1209

Nevertheless, given the considerable computational demands of the required analysis,

optimization, and image synthesis tools (Belém, 2019; D’Agostino et al., 2021; Kosicki et al.,

2020), addressing the previous constraints often requires having programs running for weeks in

HPC workstations, which is not compatible with most projects’ deadlines. Furthermore, access to

HPC is still limited due to high acquisition and maintenance costs, as well as space requirements.

A possible solution is to allow designers to benefit from HPC remotely. To that end, using

AD is critical, as it allows us to algorithmically describe the different design tasks, thus facilitating

their manipulation and translation into HPC machines. Our thesis is that, soon, the use of remote

computing will feel as natural as other common services (Schubert et al., 2010), like water, gas,

television, and internet and this work contributes to the implementation of this reality in the

architectural context.

4. COMPUTATION AS A SERVICE

Providing HPC as a service presents itself as a possible solution to eradicate the current

inequality in access to computation resources worldwide and make it affordable to a wider

audience. Distributed HPC allows users to run programs on a grid of remote machines from the

comfort of their homes, and it is already being used for rendering and gaming on the cloud

(Armbrust et al., 2009). Blender, Autodesk, and Google Stadia, for instance, allow users to

remotely use computer farms for specific tasks.

Nevertheless, many of the available HPC resources run on operating systems that are quite

different from those typically used by architects, such as Windows or MacOS. As such, HPC often

requires converting design data and processes to match the specificities of its environment.

Moreover, HPC processes tend to be script-based, not providing immediate feedback nor

supporting user interaction via Graphical User Interface (GUI). This means that the description of

the converted processes must be, first, entirely algorithmic; second, carefully planned to avoid

mid-process errors; and third, adapted to the computing environment used (e.g., distributed

computing or grid computing). Contrastingly, traditional architectural processes have a visual-

based nature, thus largely deviating from the language understood by HPC machines.

Unlike traditional architectural processes, AD already relies on algorithmic descriptions and

thus it is a step closer to supporting architectural design in HPC environments. However, it still

requires the adaptation of the algorithms since, in most cases, to benefit from a supercomputer,

one must parallelize the work, distributing computational tasks through the available computing

nodes. Typical AD processes are composed of a plethora of tasks related to design exploration,

analysis, optimization, and visualization, and these tasks can range from embarrassingly

parallelizable to entirely sequential. Therefore, different parallelization solutions must be

considered for each case (Pereira, 2022).

5. PARALLEL COMPUTING

Parallel computing is a type of computation that benefits from multiple processors to solve

a problem, performing many calculations simultaneously (Quinn, 1994). Parallelization, in turn,

is the act of processing data in parallel, instead of serially, therefore allowing several problems to

be solved independently and simultaneously. Two main parallelization options currently exist: (1)

distributing the algorithmic instructions through the available hardware by using multi-threading

and multi-processing or (2) using distributed (or cloud) computing strategies.

Multi-threading is the simplest parallelization option, and it supports running multiple tasks

on multiple executing threads simultaneously on a single multi-core machine, i.e., a machine that

has more than one processing unit, providing easy access to shared memory. Multi-processing also

involves a single machine, but each task is implemented by an isolated process and, thus, does not

typically share memory with others. Therefore, exchanging data between processes is not as

efficient. In both cases, scalability remains an issue since we are limited to the computing power

of a single machine.

Distributed computing involves running multiple processes on different machines. Since it

uses a network of machines, this strategy offers greater scalability. However, as the machines are

physically separated from each other, exchanging data involves a slow communication process.

3

LEITÃO et al.: AFFORDABLE COMPUTATION FOR ARCHITECTURE

Published by Digital Commons @ BAU, 2023

To run processes efficiently with parallel computing, data exchange should be minimized,

which suggests design tasks that are entirely independent from one another. Fig.1 illustrates

several embarrassingly parallelizable cases where no dependencies between separate processes

exist.

Fig.1: Embarrassingly parallelizable cases: each pixel of a render image (top left); each frame of a

render sequence (bottom); and each simulation in a sensitivity analysis (top right).

Cloud computing is a type of distributed computing that delivers computational services

remotely through the internet (Armbrust et al., 2009). It is thus a potential solution to the existing

inequality of access to HPC, allowing users to benefit from the computation power of a grid of

machines anywhere on Earth with internet access. By only requiring the use of personal computers

as terminals from where instructions are launched and results collected, cloud computing

constitutes an affordable option that has the potential to approximate the status of other daily life

services, such as water, gas, television, and internet. It is also a promising solution to enable and

democratize the use of analysis, optimization, and image synthesis processes, towards a more

socially and environmentally conscious architecture.

6. CHALLENGES OF HPC FOR AD

HPC currently has two main challenges: (1) the need to send the instructions in a batch-

processing style and (2) the need to carefully plan the distribution of the tasks to perform. This

section elaborates on these two issues, proposing guidelines to overcome them.

6.1. Batch Processing

HPC currently entails batch processing, which means computing tasks are

submitted to the remote computing service, returning the results only after completion. A

similar scenario occurs in AD, which involves, first, planning a sequence of instruction

for the computer to perform; then, describing them in a program; and, lastly, forcing their

execution by running the program.

During the execution of simple design-related instructions, model re-generation is

usually fast enough to give a false sense of interactivity, i.e., allowing us to visualize each

program change reflected on the 3D model almost immediately. As such, the execution

method lying underneath often goes unnoticed. However, the same is not true for the type

4

Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 14

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/14
DOI: 10.54729/2789-8547.1209

of processes that benefit from HPC. As the execution time is typically longer, the

interactivity illusion often fails, offering little to no visual feedback on the course of the

process. This means that mistakes are only discovered at the end of the process, or when

an error breaks it midway. Given that these processes may last for days or even weeks, it

is critical to minimize the chances of errors.

To that end, users should carefully plan parallelization jobs before sending them to

HPC services, performing sanity checks, which involve testing and validating every

component and stage separately, and making limited runs at a smaller scale. In most cases,

the time invested in these validations pays off; their relevance proportionally growing with

the size of the computation task.

Another challenge of batch processing lies in the architects’ typical lack of

experience with textual programming. Due to the smoother learning curve and typical

interactivity, visual programming offers a more democratized access to computational

methods at small scales, allowing architects with little to no programming experience to

rapidly achieve interesting results. However, it tends not to scale to large construction

projects without the aid of textual scripting (Janssen, 2014; Leitão et al., 2012; Ma et al.,

2021), therefore not supporting the processes that potentially benefit from HPC. To that

regard, textual programming is the de facto tool for large-scale development.

6.2. Allocating Jobs

Parallelized approaches require job allocation, that is, deciding how to map tasks to

the HPC hardware. While some tools, such as POVRay and Accelerad, already know how

to handle job allocation, in other cases, this falls under the programmer’s responsibility.

In that case, it typically requires executing commands at the level of the operating system,

a task that typically lies outside of the architect’s comfort zone.

Additionally, when the task involves the modeling tools architects typically use,

such as AutoCAD or Rhinoceros, the situation becomes worse because they are usually

not compatible with HPC operating systems. A possible solution is to create virtual

machines running the needed operating system but there are other problems. As these tools

are mainly conceived for single-user/single-threaded use, they can hardly steer parallel

processes by themselves. There are workarounds for this, such as having several instances

of the tools running concurrently, but other challenges may arise with this solution, such

as concurrent file writing or license limitations. While the first can, once more, be solved

with virtual machines, the latter has no solution besides buying more licenses.

Following the same logic, when multithreaded tools, such as POVRay, are not using

all the available hardware resources, we can also force the execution of multiples instances

to increase the parallelization. In all these cases, however, the programmer must plan the

division of labor among the tool’s instances and must ensure the parallelization does not

surpass the available resources.

7. EVALUATION

This section investigates the potential of using HPC resources to perform different AD tasks

through practical experiments using the Khepri AD tool (Sammer et al., 2019) due to its portability

between different design, analysis, and optimization tools. For that, we modeled a structural case

study in Khepri and selected, among the supported tools, those that already support batch

processing, namely Frame3DD and POVRay. From the experiments developed, we present three

relevant ones encompassing analysis and rendering (section 7.4) and optimization (section 7.5).

In the following sections, we elaborate on (1) the adopted AD workflow for remote HPC, (2) how

we overcame the challenges of HPC (particularly those regarding batch processing and job

allocation), and (3) the time gains in each case.

5

LEITÃO et al.: AFFORDABLE COMPUTATION FOR ARCHITECTURE

Published by Digital Commons @ BAU, 2023

7.1. Case Study

The performed experiment addresses the design space exploration of a simple truss

structure inspired by Gaudi's catenary curves (Fig.2 left), whose legs can be interconnected

using different truss schemes (Fig.2 right). The truss is made of Bamboo and is placed on a

slab with a randomized outline, which means it does not have an axis of symmetry and,

therefore, presents an interesting resistance test case. In this case study, we were interested in

simulating and optimizing its structural performance, as well as in developing render images

of possible design variations.

Fig.2: Gaudi-inspired truss structure with randomized outline (left) and detail of different truss

schemes (right).

7.2. Hardware Conditions

The evaluation was conducted on a supercomputer containing four computing nodes,

each providing 96 AMD EPYC 7552 cores, running at 2.2 GHz and accessing 512 GB of

RAM. In total, the partition allowed 384 simultaneous execution threads, using 2 TB of

memory. Although these capabilities were constrained by the supercomputer’s topology and

the available resources at each moment, they still represent a significant amount of computing

power when compared to current commodity hardware, which typically supports only 8

execution threads using 16 GB of RAM.

7.3. Batch Processing

There are large differences between the hardware of the supercomputer and that of a

typical laptop, but the differences in their software are even bigger. As the supercomputer

uses the Linux-based CentOS 7 operating system, which mostly operates in batch mode, the

scripts sent to it must carefully describe the intended executions and the resources needed.

Moreover, it does not provide immediate feedback, nor does it support any program requiring

either user interaction or a GUI.

To help deal with these challenges, we used the job scheduling system of the popular

open-source cluster management tool Slurm. Since not all software available for Linux can

directly run on a supercomputer, we also installed the exact same operating system on a local

virtual machine. This allowed us to recompile the software more easily and, only after

successfully testing them on our own virtual machine, move it to the supercomputer.

The AD tool used in the case study, Khepri, is based on the Julia programming

language, which supports multi-threading and distributed computing, provided by the

Distributed standard library as well as external packages, such as MPI.jl and

DistributedArrays.jl, Khepri, however, is not thread-safe, meaning that it is not prepared for

parallel execution. Hence, we were particularly interested in testing its distributed computing

capabilities.

7.4. Using Multithreaded Software

Design space exploration is one of the simplest applications of HPC in AD. In this

case, the idea was to study the impact of the design parameters in the performance of the

above-mentioned truss structure.

6

Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 14

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/14
DOI: 10.54729/2789-8547.1209

Our first experiment tested a vertical load of increasing magnitude (from 0 to 100N)

applied to all non-supported truss nodes. For each load case, the structure was analyzed using

Frame3DD and the computed truss node displacements were used to show the shape of the

truss under load in the render produced by POVRay (Fig.3).

Fig.3: Renders of the truss under different loads.

Each structural analysis was entirely sequential, so we could not benefit from multiple

threads on a single evaluation. However, the most time-consuming task in this process was

not the analysis itself, but rather the rendering of the result afterwards - a task that is highly

parallelized. For rendering in POVRay we took full advantage of the 96 CPUs available on

each node. The parallelization process is schematized in Fig.4. The evaluation of 200 different

load cases together with the Full HD rendering of the results took 1h46m to complete. In a

typical PC, the same experiment would have taken approximately 14 hours.

7

LEITÃO et al.: AFFORDABLE COMPUTATION FOR ARCHITECTURE

Published by Digital Commons @ BAU, 2023

Fig.4: The AD program is sequentially launching analysis processes in

Frame3DD and rendering processes in POVRay. POVRay, as a multithreaded

tool, automatically distributes the task among the available cores.

In the next test, we measured the scalability of POVRay, by rendering image sequences

of the 3D structure in two sizes (1024x768 and 1920x1024) and with different materials

(Fig.5) while increasing the number of CPUs on each test. Fig.6 shows the time spent for

each case and for different numbers of threads. To eliminate possible fluctuations in the load

of the computing node, we present the average of three repeated tests.

Once more comparing to commodity hardware, while in our experiments the time per

image when using 96 cores was 30.5 and 110.3 seconds for the small and large resolution

image, respectively (Fig.6 top), in a typical PC we would likely be limited to eight threads.

Still using a supercomputer, the time per image using eight threads was 214 and 857 seconds

for the small and large resolution image, respectively, which represents an 8X slowdown. On

a desktop, depending on the hardware, this slowdown can be even bigger.

Fig.5: Renders of the truss with different materials:

streel and glass (top), and bamboo and glass (bottom).

8

Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 14

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/14
DOI: 10.54729/2789-8547.1209

Now focusing on HPC, in general, there are relevant speedups up to the upper limit of

threads. Although it pales in comparison to the initial gains, from 80 threads to 96 threads

there is still a significant reduction in the high-resolution image. Based on this analysis, we

can determine the number of threads we should use. As is visible in Fig.6 (bottom), for the

rendering task with the smaller resolution, it only paid off to use up to 80 threads, obtaining

an almost 40X speedup when compared to using just one thread. After that, the gains were

marginal. In the case of the larger resolution one, despite the fluctuations, not only were we

able to reach a speedup of almost 65X, but the trend line also evidenced the potential for

achieving even bigger speedups. In fact, POVRay can take advantage of 512 threads, which

means we were still a long way from the limit.

Fig.6: On top, the trend lines for the mean time spent in rendering for different numbers of

processes (threads) for the two image sizes (1024x768 and 1920x1024). On the bottom, the

speedup obtained from the same data set.

9

LEITÃO et al.: AFFORDABLE COMPUTATION FOR ARCHITECTURE

Published by Digital Commons @ BAU, 2023

7.5. Launching Concurrent Processes

To measure the potential gains that parallelization could provide to optimization

problems, we evaluated a non-parallelizable objective function: the optimization of the truss’

structural performance, measured by the maximum displacement of the nodes. To that end,

we selected the variable to optimize during the experiment – a vector containing the X and Y

coordinates of the truss’ center node, where all the arches join - and kept all remaining design

variables unchanged, including the truss’ height.

To evaluate the objective function, we used the structural analysis tool Frame3DD. To

optimize this function, we used two different parallelized optimization strategies from the

BlackBoxOptim library: Exponential Natural Evolution Strategy (xNES) and Separable

Natural Evolution Strategy (sNES). BlackBoxOptim supports multi-threading and multi-

processing, allowing the optimization algorithm to evaluate many candidate solutions at the

same time. Since Khepri is not yet thread-safe, we opted for multiple independent processes.

To evaluate the scalability of the optimization process, we performed several

experiences with a varying number of working cores. We followed the BlackBoxOptim

guidelines, setting up a master process responsible for running the optimization and worker

processes responsible for evaluating candidate solutions (Fig.7).

Fig.7: The optimization algorithm functioning as the master process, launching parallel

Frame3DD processes to evaluate candidate solution batches.

For reproducibility purposes, we fixed the seed of the master process’ random number

generator, allowing us to repeat the experiments with a different number of workers while

ensuring the same solution is reached after the same number of steps. We performed three

independent runs for each test to smooth out the noise, set an initial population size of 500,

and allowed the optimizations to do a maximum of 5000 objective function evaluations. Fig.8

presents the mean time spent in the optimization with different numbers of processes for both

algorithms.

10

Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 14

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/14
DOI: 10.54729/2789-8547.1209

Fig.8: Time spent in the optimization process of the truss structure for

different numbers of processes using xNES (top) and sNES (bottom).

Results show that the optimization clearly benefited from the parallel evaluation of

candidate solutions but only up to eight concurrent processes. It seems that the

BlackBoxOptim library is not yet fully capable of exploring a large number of computing

resources. Unlike the previous experiments, the gains of the supercomputer do not surpass

those of a normal laptop.

8. DISCUSSION

This section discusses the results of the evaluation, reflects upon the way the two main

HPC challenges were handled, the lessons learnt in the process, and the time and cost gains of

the experience.

Regarding the first topic, results show that accessing HPC resources is advantageous for

architectural design practice, particularly when performing embarrassingly parallel tasks such as

rendering. In these cases, we concluded that HPC provides large computational gains (the greater

the number of processes, the greater the speedups achieved), and even greater gains are expected

with higher numbers of threads than those tested in these experiments. In design optimization

tasks, however, the speedups obtained were not as impressive. The results lead to the conclusion

that for the specific optimization algorithms and for the problem addressed in this research there

is no need to use more than eight processes.

11

LEITÃO et al.: AFFORDABLE COMPUTATION FOR ARCHITECTURE

Published by Digital Commons @ BAU, 2023

There is, however, a silver lining: if it does not compensate to launch more than eight

processes for a given optimization algorithm, we can use the remaining computing resources to

evaluate other algorithms. This is particularly beneficial, for instance, when addressing the No

Free Lunch theorem (Pereira and Leitão, 2020), which states that no optimization algorithm is

better than all others in all cases. The consequence is that multiple algorithms need to be tested

and HPC allows these tests to be done simultaneously, thus taking no longer than running the

slowest of them.

The two main challenges of HPC, batch processing and job allocation, were surpassed in

these experiments with a high dose of manual labor. Some of the parallelization solutions

presented were achieved only after several trial-and-error loops, leaving us with a list of lessons

for future use:

1. HPC resources provide little to no compatibility with the tools that architects typically use

tools requiring GUIs can hardly run in HPC environments and even batch-oriented tools

frequently need to be adapted. Furthermore, lack of administrative privileges impedes

software installations on HPC environments. Workarounds need to be found.

2. Not all software or design tasks can benefit from HPC resources. The structural analysis

tool used (Frame3DD) is one example that could not benefit from multiple CPUs because

the software was not parallelized. A specific parallelization strategy must then be devised

for each case.

3. Even in the processes that directly benefit from parallelization, the performance

improvements achieved are variable. For instance, while the rendering tasks considerably

benefited from supercomputing resources, the optimization tasks using parallelized

algorithms only benefited up to a point. These limits should be tested and known before

launching large processes since failing to consider them may constitute a waste of resources.

4. It only pays off to parallelize if the time it takes to start the parallel tasks is significantly

smaller than the time needed to complete those tasks. Otherwise, instead of speeding up the

computation, we might end up slowing it down.

Finally, we circle back to the goal of this paper - affordable computation for architecture

- by discussing the cost of these experiments. Despite the huge computational power of the

supercomputer that was used in this evaluation, its operational costs are rated at 0,01€ core*hour.

This means that even when using all available resources (4 nodes with 96 cores each), we pay

less than 4€ per hour, which is an enormous cost reduction when compared to the acquisition

and running costs (electricity and maintenance) of a personal workstation or, in any case, the sort

of workstation required to handle the demanding computations presented in reasonable time

(Isard et al., 2007).

9. CONCLUSION

Algorithmic Design (AD) allows architects to enhance their design processes by facilitating

the integration of analysis and optimization since early design stages. However, these tasks are

typically highly time- and resource-consuming, which makes them difficult to apply on the typical

hardware available to architects. High-Performance Computing (HPC) is a tempting solution to

these problems.

In this paper, we presented a field report evaluating the potential benefits of remote HPC

for AD workflows. The work outlines the two main issues associated with HPC for AD, batch

processing and job allocation, and describes how we overcame them in the process of parallelizing

algorithmic design, analysis, optimization, and visualization.

Our results show that remote HPC can considerably reduce the time and costs associated

with computationally expensive processes, making AD approaches accessible to users with limited

resources. However, some challenges remain as expertise is required to surpass the issues

associated with HPC. Future research paths should focus on parallelization strategies that can

facilitate the planning, testing, and launching of processes for architects.

12

Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 14

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/14
DOI: 10.54729/2789-8547.1209

ACKNOWLEDGEMENTS

This work was supported by national funds through Fundação para a Ciência e a Tecnologia

(FCT) (references UIDB/ 50021/2020, PTDC/ART-DAQ/31061/2017) and PhD grants under

contract of FCT (grant numbers SFRH/BD/128628/ 2017, DFA/BD/4682/2020).

REFERENCES

- ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A.D., KATZ, R.H., KONWINSKI, A.,

LEE, G., PATTERSON, D.A., RABKIN, A., STOICA, I. AND ZAHARIA, M., 2009. Above the

Clouds: A Berkeley View of Cloud Computing.

- BELÉM, C.G., 2019. Optimization of Time-Consuming Objective Functions: Derivative-free

approaches and their application in architecture. Instituto Superior Técnico, University of

Lisbon.

- BOECK, L., VERBEKE, S., AUDENAERT, A. AND MESMAEKER, L., 2015. Improving the

Energy Performance of Residential Buildings: A literature review. Renewable and Sustainable

Energy Reviews, 52, 960-975.

- CAETANO, I., SANTOS, L., AND LEITÃO, A., 2020. Computational design in architecture:

Defining parametric, generative, and algorithmic design. Frontiers of Architectural Research, 9,

287–300.

- D’AGOSTINO, D., D’AGOSTINO, P., MINELLI, F. AND MINICHIELLO, F., 2021. Proposal

of a new automated workflow for the computational performance-driven design optimization of

building energy need and construction cost. Energy and Buildings, 239.

- DILLEN, W., LOMBAERT, G., MERTENS, R., BEURDEN, H. Van, JASPAERT, D. AND

SCHEVENELS, M., 2020. Optimization in a realistic structural engineering context: Redesign of

the Market Hall in Ghent. Engineering Structures, 228.

- FIGLIOLA, A. AND BATTISTI, A., 2021. Feedback on the Design Processes for the

Materialization of Informed Architectures. In: A. FIGLIOLA AND A. BATTISTI, ed. Post-

Industrial Robotics: Exploring Informed Architecture. Springer Singapore: Singapore, 155-173.

- HENRIKSSON, V. AND HULT, M., 2015. Rationalizing Freeform Architecture: Surface

discretization and multi-objective optimization. Chalmers University of Technology.

- ISARD, M., BUDIU, M., YU, Y., BIRRELL, A. AND FETTERLY, D., 2007. Dryad: Distributed

Data-Parallel Programs from Sequential Building Blocks. SIGOPS Oper. Syst. Rev, 41, 59–72.

- JANSSEN, P., 2014. Visual Dataflow Modelling: Some thoughts on complexity. In: Fusion:

Proceedings of the 32nd eCAADe Conference. Newcastle upon Tyne, UK, 305-314.

- KOLAREVIC, B., 2005. Towards the performative in Architecture. In: B. KOLAREVIC AND

A.M. MALKAWI, ed. Performative Architecture: Beyond Instrumentality. Spon Press: London,

203-214.

- KOSICKI, M., TSILIAKOS, M. AND TSIGKARI, M., 2020. HYDRA Distributed Multi-

Objective Optimization for Designers. In: Impact: Design with all Senses. Springer International

Publishing, Cham, 106–118.

- LEITÃO, A., SANTOS, L. AND LOPES, J., 2012. Programming Languages for Generative

Design: A Comparative Study. International Journal of Architectural Computing, 10(1), 139-162.

- LIN, B., CHEN, H., YU, Q., ZHOU, X., LV, S., HE, Q. AND LI, Z., 2021. MOOSAS – A

systematic solution for multiple objective building performance optimization in the early design

stage. Building and Environment, 200.

- MA, W., WANG, X., WANG, J., XIANG, X. AND SUN, J., 2021. Generative Design in Building

Information Modelling (BIM): Approaches and Requirements. Sensors, 21.

- OXMAN, R., 2008. Performance-based Design: Current Practices and Research Issues.

International Journal of Architectural Computing, 6(1), 1-17.

- PEREIRA, I., 2022. Reconstructing Architectural Optimization Workflows. Instituto Superior

Técnico, University of Lisbon.

13

LEITÃO et al.: AFFORDABLE COMPUTATION FOR ARCHITECTURE

Published by Digital Commons @ BAU, 2023

- PEREIRA, I. AND LEITÃO, A., 2020. More is more: The no free lunch theorem in architecture.

In: Imaginable Futures: Design Thinking, and the Scientific Method: Proceedings of the

International Conference of Architectural Science Association. Auckland, New Zealand, 765-774.

- QUINN, M.J., 1994. Parallel Computing: Theory and Practice, 2nd edition. ed. McGraw-Hill,

Inc., USA.

- SAMMER, M., LEITÃO, A. AND CAETANO, I., 2019. From Visual Input to Visual Output in

Textual Programming. In: M. HAEUSLER, M. SCHNABEL AND T. FUKUDA, ed. Intelligent

& Informed: Proceedings of the 24th International CAADRIA Conference. Wellington, New

Zealand, 645-654.

- SCHUBERT, L., JEFFERY, K., NEIDECKER-LUTZ, B., BAROT, P., BEHR, F., BOSCH, P.

AND BRANDIC, I., 2010. The Future of Cloud Computing - Opportunities for European Cloud

Computing Beyond 2010.

- TERZIDIS, K., 2004. Algorithmic Design: A Paradigm Shift in Architecture? In: Architecture in

the Network Society: 22nd eCAADe Conference Proceedings. Warsaw, Poland, 201-207.

14

Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 14

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/14
DOI: 10.54729/2789-8547.1209

	AFFORDABLE COMPUTATION FOR ARCHITECTURE
	Recommended Citation

	AFFORDABLE COMPUTATION FOR ARCHITECTURE
	Abstract
	Keywords

	AFFORDABLE COMPUTATION FOR ARCHITECTURE

