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ABSTRACT 

Current architectural requirements prioritize the need to minimize the ecological footprint. By taking 

advantage of computational design approaches like Algorithmic Design (AD), architects can enhance 

their design processes with analysis, optimization, and visualization mechanisms, which are critical 

to explore design solutions that meet this need. However, these mechanisms are also highly time- and 

resource-consuming, often implying a quality tradeoff or the acquisition of High-Performance 

Computing (HPC) machines. The latter are not yet affordable for most design studios but, fortunately, 

they can be contracted as a service. This paper evaluates the impact of computation as a service in 

architecture and, more specifically, the remote use of HPC for AD, with the aim of reducing the time 

and costs associated with computationally expensive processes. A set of experiments were made 

involving analysis, optimization, and rendering of a selected case study. Results indicate that HPC 

services are advantageous, particularly when performing embarrassingly parallelizable tasks such as 

rendering. However, some challenges remain, namely the required expertise. 

 

Keywords: Algorithmic Design; High-Performance Computing; Design Optimization; Performance 

Analysis; Visualization. 

 

 ملخص

الأولوية للحاجة إلى تقليل البصمة البيئية. من خلال الاستفادة من مناهج التصميم الحسابي مثل تعطي المتطلبات المعمارية الحالية 

الرؤية، والتي ات تقنيالتصميم الخوارزمي، يمكن للمعماريين تعزيز عمليات التصميم الخاصة بهم من خلال آليات التحليل والتحسين و

الحاجة. ومع ذلك، فإن هذه الآليات أيضًا تستهلك الكثير من الوقت والموارد، تعد ضرورية لاستكشاف حلول التصميم التي تلبي هذه 

مما يعني في كثير من الأحيان مقايضة الجودة أو الاستحواذ على آلات الحوسبة عالية الأداء. وبالرغم من عدم توفر آلات الحوسبة 

 الحوسبة"يمكن التعاقد عليها كخدمة. تقي ِّم هذه الورقة تأثير  عالية الأداء في متناول معظم استوديوهات التصميم حتى الآن لحسن الحظ

بهدف  ،لات الحوسبة عالية الأداء فى التصميم المعمار في الهندسة المعمارية ، وبشكل أكثر تحديداً، الاستخدام عن بعُد لآ "كخدمة

تقليل الوقت والتكاليف المرتبطة بالعمليات الحسابية باهظة الثمن. تم إجراء مجموعة من التجارب التي تشمل التحليل والتحسين 

مفيدة، لا سيما عند أداء مهام متوازنة  آلات الحوسبة عالية الأداء النتائج إلى أن خدمات وقد أشارتدراسة حالة مختارة. التمثيل ل

 الخبرة المطلوبة. وتحديدا مثل العرض. ومع ذلك، لا تزال هناك بعض التحدياتبشكل محرج 

 

 .التصميم الخوارزمى، آلات الحوسبة عالية الأداء، تحسين التصميم، تحليل الأداء، تقنيات الرؤية الكلمات المفتاحية:
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1. INTRODUCTION 

Architecture must respond to the ever evolving social and environmental demands, such as 

the growing awareness on the industry’s ecological footprint (Boeck et al., 2015; Dillen et al., 

2020). By taking advantage of new digital tools and computation-based design approaches, 

architects have been increasingly exploring design solutions that meet these demands (Kolarevic, 

2005). Algorithmic Design (AD) is one such approach (Caetano et al., 2020) that facilitates the 

integration of analysis and optimization mechanisms since early design stages. This not only 

provides architects with a better grasp of their designs’ behavior (Figliola and Battisti, 2021; 

Henriksson and Hult, 2015; Oxman, 2008), but also critically helps them orient the design process 

in a more informed manner.  

Nevertheless, analysis and optimization tasks are typically highly time- and resource-

consuming, often implying a quality tradeoff. A straightforward solution for this problem is the 

use of High-Performance Computing (HPC) resources (Isard et al., 2007; Lin et al., 2021). Core 

count is one of the determining factors of computer performance and, while the first Central 

Processing Unit (CPU) invented only had one core to run one tasks, today we expect computers 

to work on multiple tasks simultaneously. To do so, as well as to handle resource-intensive 

programs, CPUs have evolved towards multi-cores. Portable computers these days typically have 

CPUs with four to eight cores, which allows for the computation of around 1011 operations per 

second. High-end desktop workstations go further by combining two or four CPUs in one machine, 

which elevates the number of allowed operations per second to around 1013. Supercomputers take 

this concept to the next level by offering hundreds or thousands of CPUs, reaching 1017 operations 

per second. 

Unfortunately, only a small fraction of architectural studios worldwide can afford the kind 

of HPC described above, which limits the latter’s potential benefits for nowadays architectural 

practice, particularly, in solving design optimization problems, which are critical to reduce the 

ecological impact of the industry. To promote better architecture for all, improving life quality 

while mitigating the industry’s environmental footprint, computation must become affordable to 

anyone and anywhere. With this goal in mind, this research presents the results of a field report 

evaluating the potential performance benefits of HPC for AD. 

2. METHODOLOGY 

HPC is advantageous to reach architectural solutions with higher indoor environmental 

quality and reduced ecological footprints but the access to HPC machines is still limited. This 

research addresses this problem by evaluating the remote use of HPC in current AD practices 

using the following methodology: 

1. Investigating HPC methods and their potential applications in architecture. 

2. Identifying the benefits and challenges of remote HPC for architectural design. 

3. Performing a set of experiments for multiple design tasks using a supercomputer to (a) validate 

the proposed hypothesis regarding time and cost gains, and (b) find ways to surpass the 

challenges encountered. 

4. Analyzing the advantages obtained and challenges faced during the experiments and proposing 

guidelines for future use.  

5. Drawing conclusions on the findings and forecasting future research paths. 

In the following sections we elaborate on each of these tasks. 

3. COMPUTATION IN ARCHITECTURE 

The emergence of computation-based tools triggered new design approaches, such as AD 

(Caetano et al., 2020), that combine the computational power of machines with the architects’ 

creative potential (Terzidis, 2004). Due to its algorithmic nature, AD allows automating repetitive 

and time-consuming design tasks, facilitates design changes, and increases design flexibility. 

Therefore, in addition to reducing the time and effort spent in testing new solutions, and thus 

increasing design space exploration, AD makes it possible to deal with higher levels of design 

complexity involving multiple design constraints. 
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Nevertheless, given the considerable computational demands of the required analysis, 

optimization, and image synthesis tools (Belém, 2019; D’Agostino et al., 2021; Kosicki et al., 

2020), addressing the previous constraints often requires having programs running for weeks in 

HPC workstations, which is not compatible with most projects’ deadlines. Furthermore, access to 

HPC is still limited due to high acquisition and maintenance costs, as well as space requirements. 

A possible solution is to allow designers to benefit from HPC remotely. To that end, using 

AD is critical, as it allows us to algorithmically describe the different design tasks, thus facilitating 

their manipulation and translation into HPC machines. Our thesis is that, soon, the use of remote 

computing will feel as natural as other common services (Schubert et al., 2010), like water, gas, 

television, and internet and this work contributes to the implementation of this reality in the 

architectural context. 

4. COMPUTATION AS A SERVICE 

Providing HPC as a service presents itself as a possible solution to eradicate the current 

inequality in access to computation resources worldwide and make it affordable to a wider 

audience. Distributed HPC allows users to run programs on a grid of remote machines from the 

comfort of their homes, and it is already being used for rendering and gaming on the cloud 

(Armbrust et al., 2009). Blender, Autodesk, and Google Stadia, for instance, allow users to 

remotely use computer farms for specific tasks. 

Nevertheless, many of the available HPC resources run on operating systems that are quite 

different from those typically used by architects, such as Windows or MacOS. As such, HPC often 

requires converting design data and processes to match the specificities of its environment. 

Moreover, HPC processes tend to be script-based, not providing immediate feedback nor 

supporting user interaction via Graphical User Interface (GUI). This means that the description of 

the converted processes must be, first, entirely algorithmic; second, carefully planned to avoid 

mid-process errors; and third, adapted to the computing environment used (e.g., distributed 

computing or grid computing). Contrastingly, traditional architectural processes have a visual-

based nature, thus largely deviating from the language understood by HPC machines. 

Unlike traditional architectural processes, AD already relies on algorithmic descriptions and 

thus it is a step closer to supporting architectural design in HPC environments. However, it still 

requires the adaptation of the algorithms since, in most cases, to benefit from a supercomputer, 

one must parallelize the work, distributing computational tasks through the available computing 

nodes. Typical AD processes are composed of a plethora of tasks related to design exploration, 

analysis, optimization, and visualization, and these tasks can range from embarrassingly 

parallelizable to entirely sequential. Therefore, different parallelization solutions must be 

considered for each case (Pereira, 2022). 

5. PARALLEL COMPUTING 

Parallel computing is a type of computation that benefits from multiple processors to solve 

a problem, performing many calculations simultaneously (Quinn, 1994). Parallelization, in turn, 

is the act of processing data in parallel, instead of serially, therefore allowing several problems to 

be solved independently and simultaneously. Two main parallelization options currently exist: (1) 

distributing the algorithmic instructions through the available hardware by using multi-threading 

and multi-processing or (2) using distributed (or cloud) computing strategies. 

Multi-threading is the simplest parallelization option, and it supports running multiple tasks 

on multiple executing threads simultaneously on a single multi-core machine, i.e., a machine that 

has more than one processing unit, providing easy access to shared memory. Multi-processing also 

involves a single machine, but each task is implemented by an isolated process and, thus, does not 

typically share memory with others. Therefore, exchanging data between processes is not as 

efficient. In both cases, scalability remains an issue since we are limited to the computing power 

of a single machine. 

Distributed computing involves running multiple processes on different machines. Since it 

uses a network of machines, this strategy offers greater scalability. However, as the machines are 

physically separated from each other, exchanging data involves a slow communication process. 
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To run processes efficiently with parallel computing, data exchange should be minimized, 

which suggests design tasks that are entirely independent from one another. Fig.1 illustrates 

several embarrassingly parallelizable cases where no dependencies between separate processes 

exist. 

 

Fig.1: Embarrassingly parallelizable cases: each pixel of a render image (top left); each frame of a 

render sequence (bottom); and each simulation in a sensitivity analysis (top right). 

 

Cloud computing is a type of distributed computing that delivers computational services 

remotely through the internet (Armbrust et al., 2009). It is thus a potential solution to the existing 

inequality of access to HPC, allowing users to benefit from the computation power of a grid of 

machines anywhere on Earth with internet access. By only requiring the use of personal computers 

as terminals from where instructions are launched and results collected, cloud computing 

constitutes an affordable option that has the potential to approximate the status of other daily life 

services, such as water, gas, television, and internet. It is also a promising solution to enable and 

democratize the use of analysis, optimization, and image synthesis processes, towards a more 

socially and environmentally conscious architecture. 

6. CHALLENGES OF HPC FOR AD 

HPC currently has two main challenges: (1) the need to send the instructions in a batch-

processing style and (2) the need to carefully plan the distribution of the tasks to perform. This 

section elaborates on these two issues, proposing guidelines to overcome them. 

6.1. Batch Processing 

HPC currently entails batch processing, which means computing tasks are 

submitted to the remote computing service, returning the results only after completion. A 

similar scenario occurs in AD, which involves, first, planning a sequence of instruction 

for the computer to perform; then, describing them in a program; and, lastly, forcing their 

execution by running the program.  

During the execution of simple design-related instructions, model re-generation is 

usually fast enough to give a false sense of interactivity, i.e., allowing us to visualize each 

program change reflected on the 3D model almost immediately. As such, the execution 

method lying underneath often goes unnoticed.  However, the same is not true for the type 
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of processes that benefit from HPC. As the execution time is typically longer, the 

interactivity illusion often fails, offering little to no visual feedback on the course of the 

process. This means that mistakes are only discovered at the end of the process, or when 

an error breaks it midway. Given that these processes may last for days or even weeks, it 

is critical to minimize the chances of errors. 

To that end, users should carefully plan parallelization jobs before sending them to 

HPC services, performing sanity checks, which involve testing and validating every 

component and stage separately, and making limited runs at a smaller scale. In most cases, 

the time invested in these validations pays off; their relevance proportionally growing with 

the size of the computation task. 

Another challenge of batch processing lies in the architects’ typical lack of 

experience with textual programming. Due to the smoother learning curve and typical 

interactivity, visual programming offers a more democratized access to computational 

methods at small scales, allowing architects with little to no programming experience to 

rapidly achieve interesting results. However, it tends not to scale to large construction 

projects without the aid of textual scripting (Janssen, 2014; Leitão et al., 2012; Ma et al., 

2021), therefore not supporting the processes that potentially benefit from HPC. To that 

regard, textual programming is the de facto tool for large-scale development. 

6.2. Allocating Jobs 

Parallelized approaches require job allocation, that is, deciding how to map tasks to 

the HPC hardware. While some tools, such as POVRay and Accelerad, already know how 

to handle job allocation, in other cases, this falls under the programmer’s responsibility. 

In that case, it typically requires executing commands at the level of the operating system, 

a task that typically lies outside of the architect’s comfort zone. 

Additionally, when the task involves the modeling tools architects typically use, 

such as AutoCAD or Rhinoceros, the situation becomes worse because they are usually 

not compatible with HPC operating systems. A possible solution is to create virtual 

machines running the needed operating system but there are other problems. As these tools 

are mainly conceived for single-user/single-threaded use, they can hardly steer parallel 

processes by themselves. There are workarounds for this, such as having several instances 

of the tools running concurrently, but other challenges may arise with this solution, such 

as concurrent file writing or license limitations. While the first can, once more, be solved 

with virtual machines, the latter has no solution besides buying more licenses. 

Following the same logic, when multithreaded tools, such as POVRay, are not using 

all the available hardware resources, we can also force the execution of multiples instances 

to increase the parallelization. In all these cases, however, the programmer must plan the 

division of labor among the tool’s instances and must ensure the parallelization does not 

surpass the available resources. 

7. EVALUATION 

This section investigates the potential of using HPC resources to perform different AD tasks 

through practical experiments using the Khepri AD tool (Sammer et al., 2019) due to its portability 

between different design, analysis, and optimization tools. For that, we modeled a structural case 

study in Khepri and selected, among the supported tools, those that already support batch 

processing, namely Frame3DD and POVRay. From the experiments developed, we present three 

relevant ones encompassing analysis and rendering (section 7.4) and optimization (section 7.5). 

In the following sections, we elaborate on (1) the adopted AD workflow for remote HPC, (2) how 

we overcame the challenges of HPC (particularly those regarding batch processing and job 

allocation), and (3) the time gains in each case. 
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7.1. Case Study 

The performed experiment addresses the design space exploration of a simple truss 

structure inspired by Gaudi's catenary curves (Fig.2 left), whose legs can be interconnected 

using different truss schemes (Fig.2 right). The truss is made of Bamboo and is placed on a 

slab with a randomized outline, which means it does not have an axis of symmetry and, 

therefore, presents an interesting resistance test case. In this case study, we were interested in 

simulating and optimizing its structural performance, as well as in developing render images 

of possible design variations. 

   

Fig.2: Gaudi-inspired truss structure with randomized outline (left) and detail of different truss 

schemes (right). 

7.2. Hardware Conditions 

The evaluation was conducted on a supercomputer containing four computing nodes, 

each providing 96 AMD EPYC 7552 cores, running at 2.2 GHz and accessing 512 GB of 

RAM. In total, the partition allowed 384 simultaneous execution threads, using 2 TB of 

memory. Although these capabilities were constrained by the supercomputer’s topology and 

the available resources at each moment, they still represent a significant amount of computing 

power when compared to current commodity hardware, which typically supports only 8 

execution threads using 16 GB of RAM. 

7.3. Batch Processing 

There are large differences between the hardware of the supercomputer and that of a 

typical laptop, but the differences in their software are even bigger. As the supercomputer 

uses the Linux-based CentOS 7 operating system, which mostly operates in batch mode, the 

scripts sent to it must carefully describe the intended executions and the resources needed. 

Moreover, it does not provide immediate feedback, nor does it support any program requiring 

either user interaction or a GUI.  

To help deal with these challenges, we used the job scheduling system of the popular 

open-source cluster management tool Slurm. Since not all software available for Linux can 

directly run on a supercomputer, we also installed the exact same operating system on a local 

virtual machine. This allowed us to recompile the software more easily and, only after 

successfully testing them on our own virtual machine, move it to the supercomputer. 

The AD tool used in the case study, Khepri, is based on the Julia programming 

language, which supports multi-threading and distributed computing, provided by the 

Distributed standard library as well as external packages, such as MPI.jl and 

DistributedArrays.jl, Khepri, however, is not thread-safe, meaning that it is not prepared for 

parallel execution. Hence, we were particularly interested in testing its distributed computing 

capabilities. 

7.4. Using Multithreaded Software 

Design space exploration is one of the simplest applications of HPC in AD. In this 

case, the idea was to study the impact of the design parameters in the performance of the 

above-mentioned truss structure.  
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Our first experiment tested a vertical load of increasing magnitude (from 0 to 100N) 

applied to all non-supported truss nodes. For each load case, the structure was analyzed using 

Frame3DD and the computed truss node displacements were used to show the shape of the 

truss under load in the render produced by POVRay (Fig.3). 

 

 

Fig.3: Renders of the truss under different loads. 

 

Each structural analysis was entirely sequential, so we could not benefit from multiple 

threads on a single evaluation. However, the most time-consuming task in this process was 

not the analysis itself, but rather the rendering of the result afterwards - a task that is highly 

parallelized. For rendering in POVRay we took full advantage of the 96 CPUs available on 

each node. The parallelization process is schematized in Fig.4. The evaluation of 200 different 

load cases together with the Full HD rendering of the results took 1h46m to complete. In a 

typical PC, the same experiment would have taken approximately 14 hours. 
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Fig.4: The AD program is sequentially launching analysis processes in 

Frame3DD and rendering processes in POVRay. POVRay, as a multithreaded 

tool, automatically distributes the task among the available cores. 

 

In the next test, we measured the scalability of POVRay, by rendering image sequences 

of the 3D structure in two sizes (1024x768 and 1920x1024) and with different materials 

(Fig.5) while increasing the number of CPUs on each test. Fig.6 shows the time spent for 

each case and for different numbers of threads. To eliminate possible fluctuations in the load 

of the computing node, we present the average of three repeated tests. 

Once more comparing to commodity hardware, while in our experiments the time per 

image when using 96 cores was 30.5 and 110.3 seconds for the small and large resolution 

image, respectively (Fig.6 top), in a typical PC we would likely be limited to eight threads. 

Still using a supercomputer, the time per image using eight threads was 214 and 857 seconds 

for the small and large resolution image, respectively, which represents an 8X slowdown. On 

a desktop, depending on the hardware, this slowdown can be even bigger. 

 

 

Fig.5: Renders of the truss with different materials: 

streel and glass (top), and bamboo and glass (bottom). 
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Now focusing on HPC, in general, there are relevant speedups up to the upper limit of 

threads. Although it pales in comparison to the initial gains, from 80 threads to 96 threads 

there is still a significant reduction in the high-resolution image. Based on this analysis, we 

can determine the number of threads we should use. As is visible in Fig.6 (bottom), for the 

rendering task with the smaller resolution, it only paid off to use up to 80 threads, obtaining 

an almost 40X speedup when compared to using just one thread. After that, the gains were 

marginal. In the case of the larger resolution one, despite the fluctuations, not only were we 

able to reach a speedup of almost 65X, but the trend line also evidenced the potential for 

achieving even bigger speedups. In fact, POVRay can take advantage of 512 threads, which 

means we were still a long way from the limit.  

 
 

 

Fig.6: On top, the trend lines for the mean time spent in rendering for different numbers of 

processes (threads) for the two image sizes (1024x768 and 1920x1024). On the bottom, the 

speedup obtained from the same data set. 
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7.5. Launching Concurrent Processes 

To measure the potential gains that parallelization could provide to optimization 

problems, we evaluated a non-parallelizable objective function: the optimization of the truss’ 

structural performance, measured by the maximum displacement of the nodes. To that end, 

we selected the variable to optimize during the experiment – a vector containing the X and Y 

coordinates of the truss’ center node, where all the arches join - and kept all remaining design 

variables unchanged, including the truss’ height.  

To evaluate the objective function, we used the structural analysis tool Frame3DD. To 

optimize this function, we used two different parallelized optimization strategies from the 

BlackBoxOptim library: Exponential Natural Evolution Strategy (xNES) and Separable 

Natural Evolution Strategy (sNES). BlackBoxOptim supports multi-threading and multi-

processing, allowing the optimization algorithm to evaluate many candidate solutions at the 

same time. Since Khepri is not yet thread-safe, we opted for multiple independent processes.  

To evaluate the scalability of the optimization process, we performed several 

experiences with a varying number of working cores. We followed the BlackBoxOptim 

guidelines, setting up a master process responsible for running the optimization and worker 

processes responsible for evaluating candidate solutions (Fig.7).  

 

Fig.7: The optimization algorithm functioning as the master process, launching parallel 

Frame3DD processes to evaluate candidate solution batches. 

 

For reproducibility purposes, we fixed the seed of the master process’ random number 

generator, allowing us to repeat the experiments with a different number of workers while 

ensuring the same solution is reached after the same number of steps. We performed three 

independent runs for each test to smooth out the noise, set an initial population size of 500, 

and allowed the optimizations to do a maximum of 5000 objective function evaluations. Fig.8 

presents the mean time spent in the optimization with different numbers of processes for both 

algorithms. 

10

Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 14

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/14
DOI: 10.54729/2789-8547.1209



 

  

 

 

 

Fig.8: Time spent in the optimization process of the truss structure for 

different numbers of processes using xNES (top) and sNES (bottom). 

 

Results show that the optimization clearly benefited from the parallel evaluation of 

candidate solutions but only up to eight concurrent processes. It seems that the 

BlackBoxOptim library is not yet fully capable of exploring a large number of computing 

resources. Unlike the previous experiments, the gains of the supercomputer do not surpass 

those of a normal laptop. 

8. DISCUSSION 

This section discusses the results of the evaluation, reflects upon the way the two main 

HPC challenges were handled, the lessons learnt in the process, and the time and cost gains of 

the experience. 

Regarding the first topic, results show that accessing HPC resources is advantageous for 

architectural design practice, particularly when performing embarrassingly parallel tasks such as 

rendering. In these cases, we concluded that HPC provides large computational gains (the greater 

the number of processes, the greater the speedups achieved), and even greater gains are expected 

with higher numbers of threads than those tested in these experiments. In design optimization 

tasks, however, the speedups obtained were not as impressive. The results lead to the conclusion 

that for the specific optimization algorithms and for the problem addressed in this research there 

is no need to use more than eight processes.  
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There is, however, a silver lining: if it does not compensate to launch more than eight 

processes for a given optimization algorithm, we can use the remaining computing resources to 

evaluate other algorithms. This is particularly beneficial, for instance, when addressing the No 

Free Lunch theorem (Pereira and Leitão, 2020), which states that no optimization algorithm is 

better than all others in all cases. The consequence is that multiple algorithms need to be tested 

and HPC allows these tests to be done simultaneously, thus taking no longer than running the 

slowest of them. 

The two main challenges of HPC, batch processing and job allocation, were surpassed in 

these experiments with a high dose of manual labor. Some of the parallelization solutions 

presented were achieved only after several trial-and-error loops, leaving us with a list of lessons 

for future use: 

1. HPC resources provide little to no compatibility with the tools that architects typically use 

tools requiring GUIs can hardly run in HPC environments and even batch-oriented tools 

frequently need to be adapted. Furthermore, lack of administrative privileges impedes 

software installations on HPC environments. Workarounds need to be found. 

2. Not all software or design tasks can benefit from HPC resources. The structural analysis 

tool used (Frame3DD) is one example that could not benefit from multiple CPUs because 

the software was not parallelized. A specific parallelization strategy must then be devised 

for each case. 

3. Even in the processes that directly benefit from parallelization, the performance 

improvements achieved are variable. For instance, while the rendering tasks considerably 

benefited from supercomputing resources, the optimization tasks using parallelized 

algorithms only benefited up to a point. These limits should be tested and known before 

launching large processes since failing to consider them may constitute a waste of resources. 

4. It only pays off to parallelize if the time it takes to start the parallel tasks is significantly 

smaller than the time needed to complete those tasks. Otherwise, instead of speeding up the 

computation, we might end up slowing it down. 

Finally, we circle back to the goal of this paper - affordable computation for architecture 

- by discussing the cost of these experiments. Despite the huge computational power of the 

supercomputer that was used in this evaluation, its operational costs are rated at 0,01€ core*hour. 

This means that even when using all available resources (4 nodes with 96 cores each), we pay 

less than 4€ per hour, which is an enormous cost reduction when compared to the acquisition 

and running costs (electricity and maintenance) of a personal workstation or, in any case, the sort 

of workstation required to handle the demanding computations presented in reasonable time 

(Isard et al., 2007). 

 

9. CONCLUSION 

Algorithmic Design (AD) allows architects to enhance their design processes by facilitating 

the integration of analysis and optimization since early design stages. However, these tasks are 

typically highly time- and resource-consuming, which makes them difficult to apply on the typical 

hardware available to architects. High-Performance Computing (HPC) is a tempting solution to 

these problems. 

In this paper, we presented a field report evaluating the potential benefits of remote HPC 

for AD workflows. The work outlines the two main issues associated with HPC for AD, batch 

processing and job allocation, and describes how we overcame them in the process of parallelizing 

algorithmic design, analysis, optimization, and visualization. 

Our results show that remote HPC can considerably reduce the time and costs associated 

with computationally expensive processes, making AD approaches accessible to users with limited 

resources. However, some challenges remain as expertise is required to surpass the issues 

associated with HPC. Future research paths should focus on parallelization strategies that can 

facilitate the planning, testing, and launching of processes for architects. 
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