

2.2.2. Generations

In the CA algorithm, each cell has a specific state. Whether this situation
will change in each new generation is calculated according to the rule defined in
the algorithm. For example, in GoL, cells are either "alive" or "dead". Various
patterns are obtained by showing live and dead cells in different colors (live =
black, dead = white) (Figure 1).

Fig.2: Neighbor cells in different neighborhood types.

2.2.3. Rules

In the CA algorithm, each cell has a specific state. Whether this situation
will change in each new generation is calculated according to the rule defined in
the algorithm (Figure 3). For example, in GoL, cells are either "alive" or "dead".
Various patterns are obtained by showing live and dead cells in different colors
(live = black, dead = white).

Fig.3: Rules for 3D Cellular Automata (Visions of Chaos).

3. RESEARCH BACKGROUND

The first studies of the Cellular Automata algorithm were performed without computer
support by drawing each generation separately, moving objects on a grid. There are tried-and-
tested examples available, such as Rabbit (Url-2) and Vision of Chaos (Url-1). However, these
methods are slow and limited. With the development of computer technology, the number and
quality of studies in this field have increased by calculations being made by computers.

4

Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 12

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/12
DOI: 10.54729/2789-8547.1207

Today, running the CA algorithm in most programming interfaces with visual output is
possible. While it is possible to see the outputs of only specific rules in some more advanced
applications, it is possible to define rules and print out a 3D model besides the visual output.
Additionally, there are programs that allow multiple dimensional CA algorithms, different
neighborhoods, and different cell states are numbered and inserted in the text after the first
reference to it.

3.1. Processing: Game of Life

In this study, first, the "Game of Life" application, which has an essential role in the
spread of CA applications, was examined, and the working principles of the CA algorithm
were studied. In the "Processing" (Url-3) programming interface, the GoL application was
reproduced using the "Java" programming language (Figure 4). This study is vital in
learning the CA algorithm's features to be defined in computer language.

Fig.4: A screenshot from “Game of Life” algorithm in Processing.

3.2. Vısıons of Chaos

This application (Url-1) runs algorithms such as Fractals, L-systems, multi-agent
systems, Cellular Automata, and Diffusion Limited Aggregation. It is a versatile program
that can run various generative algorithms (Figure 5). In addition to 1D, 2D, 3D, and 4D
applications of CA, there are methods in which different neighborhoods, different vitality
states, and different rules can be applied. There is a user interface where these features can
be defined. While it is easy to use, 3D models and video output are its positive features. Its
negative feature is that the algorithm has a limited choice of a sphere, cube, or a filled
environment as the initial form. This disadvantage makes it difficult to use the program as a
design tool. In the work to be done, it is aimed to produce an interface that allows the user
to determine not only the rules and CA type but also the initial state, and in this way, get rid
of randomness and make his design.

5

?ENCAN: PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA AL

Published by Digital Commons @ BAU, 2023

Fig.5: Screenshots from Visions of Chaos with 3D Cellular Automata. (Url-1)

3.3. Rabbıt (Grasshopper Plug-In)

It is included in the Grasshopper3D, which is a plugin of the Rhinoceros3D program
(Url-2). Running the CA algorithm inside a design program means better user control when
using this algorithm for design purposes. In addition to graphically defining the initial form
of the algorithm, it is also possible to intervene in the environment in real-time. Rabbit
plugin includes 2D CA algorithm and 3D CA algorithms Stacked Cellular Automata (SCA
- Stacked Cellular Automata). SCA is 3-dimensional geometry obtained by superimposing
each generation of 2-dimensional CA. Rabbit is a good example of using 2D CA and its 3D
extended version SCA as a design tool. However, this method is insufficient because it
does not contain other varieties of CA. This study aims to create a Grasshopper3D plugin
in which different methods of CA can be defined.

3.4. Comparison

The purpose of trying these three programs before writing a script for 3D CA
algorithm in Grasshopper is to learn how the algorithm works in multiple environments and
conditions. While writing a 2D CA algorithm in Processing was easier than the 3D version,
its aid to the research was the understanding of how the algorithm works.

“Visions of Chaos” (VoC) helped visualizing 3D cellular automata and how the
parameters of the algorithm worked. However, its downsides are also revealed while using
it, like not being able to control the initial shape. Using Grasshopper to simulate 3D CA
algorithm is thought to solve these problems. Rabbit, which is a Grasshopper plug-in, can
solve 3D CA problems. However, this 3D interaction is 2,5D, because of how the plug-in
works. As a conclusion, a 3D CA algorithm with the working system of VoC in
Grasshopper is written.

6

Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 12

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/12
DOI: 10.54729/2789-8547.1207

4. 3D CELLULAR AUTOMATA PLUG-IN AS A C# SCRIPT IN GRASSHOPPER

4.1. The Algorithm

The algorithm is defined as a Grasshoper3D plug-in (Figure 6). The plug-in written
in C# scripting language. The algorithm is planned to have user-defined parameters. These
parameters are:

Rules: Each rule defines a new format generation system in CA algorithms. While some
rule sets expand from a minor point, some rule sets can result in an entire format
diminishing to an optimum state. These rules can be discovered and serve different
purposes in design.

Neighborhood: Changing the definition of neighboring cells provides diversity in the
development of the system.

Cell states: At the basic level, there are two alternative states of cells in CA, live and dead.
The transition of a cell from a live state to a dead state occurs in a generational change.
Alternatively, the viability state of a cell can be defined by a number. For example, a cell is
dead when it is "0" and alive when it is "1". If the maximum number of states of CA is 4,
cells can be found in states "0,1,2,3". When a living cell in the "1" state dies, it first
changes to the "2" state, then to the "3" state, then to the "0" state. It can switch from a
"dead" state to an "alive" state only when it is "0". In the "2" or "3" state, it is considered
dead in the calculations of neighboring cells. Another example can be taken Rock-Paper-
Scissors CA. In this case, the rules between cells change according to the type of neighbor
cells.

Initial conditions: In classic CA applications, the startup format is usually defined. The
difference in shape finding comes from the random differentiation of the states of the cells
that define the initial shape. However, this randomness must be controllable for a designer.

Fig.6: 3D CA algorithms using the plug-in; Expanding Shell, Pyroclastic, Cloud.

7

?ENCAN: PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA AL

Published by Digital Commons @ BAU, 2023

4.2. Usıng The Algorıthm

The presented 3D CA plug-in can create multiple generative systems, based on the
variation in initial geometry, rules and model formation. The plug-in is tested with four
different algorithms, which are named Expanding Shell, Pyroclastic, Cloud, and Voxel
Terrain Automata.

Fig.7: Initial condition (Left), generated model using 3D CA (Right).

Fig.8: 3D CA algorithm flow chart.

8

Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 12

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/12
DOI: 10.54729/2789-8547.1207

Fig.9: Resulting 3D objects. From left to right, Expanding Shell, Cloud, Pyroclastic, Voxel

Terrain Automata.

5. CONCLUSION AND FUTURE POSSIBILITIES

With the presented Grasshopper3D plug-in "proGeny", new productive systems can be
discovered by experimenting with the rules of various cellular automata algorithms, their
neighborhoods, and the viability of cells. With these systems, new form finding experiments can
be done which result in emerging forms.

The aspects of this program that are open to development can be listed under the
following main headings:

Visual interface: Although Grasshopper's visual interface is sufficient to start these
experiments, a more user-friendly interface can be added using C#.

User interaction: In Grasshopper3D, interaction with the computer, keyboard, and mouse is
defined. However, other Grasshopper3D plugins have examples (Firefly, Quokka) like Kinect or
LeapMotion. User interaction can reach a different dimension through motion sensors, Arduino,
and various sensors.

AR/VR applications: Visual outputs of the products obtained with the developed program can
be taken on the computer screen. As a design tool, AR/VR applications can help experience this
design process in the same environment as other factors affecting design.

In today's world, where digital design has become widespread, it is seen that the role of
the designer is gradually replaced by the role of "designer of tools" or "designer of systems".
Within the scope of this study, a tool called "progeny" that the designer can use in the design
process has been developed. Using the program, the user can generate a design system on
various versions of the CA with the rules, initial format, and neighborhood parameters that he
has determined and can use this system in the design process. Since it is an application with
development potential, it can provide opportunities for new research topics.

REFERENCES

- ADAMATZKY, A. (2010). Game of life cellular automata (Vol. 1). London: Springer. Url:
https://link.springer.com/content/pdf/10.1007/978-1-84996-217-9.pdf Erişim Tarihi:
27.05.2019)

- ANON. The Compact Edition of the Oxford English Dictionary II. Oxford and New York:
Oxford University Press, 1971.

- BASSO, P., & DEL GROSSO, A. (2011). Form-finding methods for structural frameworks: a
review. Proceedings of the International Association of Shells and Spatial Structures, London.

- BENVENISTE, E. La notion de "rythme" dans son expression linguistique. Journal de
Psychologie Normale et Pathologique, 1915, 44, 401-411.

- BRENNAN, A., ALHADIDI, S., KIMM, G. (2013). Quokka: Programming for Real Time
Digital Design Platform. International Conference on Computer-Aided Architectural Design
Research in Asia, 18, pp. 261-270, Hong Kong.

9

?ENCAN: PROGENY: A GRASSHOPPER PLUG-IN THAT AUGMENTS CELLULAR AUTOMATA AL

Published by Digital Commons @ BAU, 2023

- COENDERS, J., & BOSIA, D. (2006). Computational tools for design and engineering of
complex geometrical structures: From a theoretical and a practical point of view. Game Set and
Match II. On Computer Games, Advanced Geometries, and Digital Technologies. Episode
Publishers, 006.

- DINÇER, A. E., ÇAĞDAŞ, G., & TONG, H. (2014). A computational model for mass housing
design as a decision-support tool. Procedia Environmental Sciences, 22, 270-279.

- DINO, I. (2012). Creative design exploration by parametric generative systems in architecture.
METU Journal of Faculty of Architecture, 29(1), 207-224.

- FRAISSE, P. (1982). Rhythm and tempo. The psychology of music, 1, 149-180.

- FRAZER, J. (1995). An evolutionary architecture.

- GÜZELCI, O. (2013), Bütünleşik Üretken Tasarım Sistemi ile MVRDV Silodam Projesi İçin
Cephe Üretken Sistem Önerisi, E.Gürer, S.Alaçam, Z.Bacınoğlu (Ed.), VII. Mimarlıkta Sayısal
Tasarım Ulusal Sempozyumu: Sayısal Tasarım, Entropi, Yaratıcılık, 2013, Istanbul.

- HABER, R. B., & Abel, J. F. (1982). Initial equilibrium solution methods for cable reinforced
membranes part I—formulations. Computer Methods in Applied Mechanics and Engineering,
30(3), 263-284.

- LEWIS, W. J. (2003). Tension structures: form and behaviour. Thomas Telford.

- LIDDELL, HENRY GEORGE, AND ROBERT SCOTT. "ῥυθμός", in A Greek-English
Lexicon, revised edition, combining the text of the ninth edition with an extensively revised and
expanded Supplement. Oxford and New York: Oxford University Press, 1996. Online, Perseus
Project.

- VEENENDAAL, D., & BLOCK, P. (2012). An overview and comparison of structural form
finding methods for general networks. International Journal of Solids and Structures, 49(26),
3741-3753.

- WOLFRAM, S. (1984). Universality and complexity in cellular automata. Physica D: Nonlinear
Phenomena, 10(1-2), 1-35.

- URL-1: https://softologyblog.wordpress.com/category/cellular-automata-2/

- URL -2: https://parametrichouse.com/rabbit/

- URL -3: https://processing.org/

10

Architecture and Planning Journal (APJ), Vol. 28, Iss. 3 [2023], Art. 12

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/12
DOI: 10.54729/2789-8547.1207

https://softologyblog.wordpress.com/category/cellular-automata-2/
https://parametrichouse.com/rabbit/

