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GETTING A HANDLE ON FLOOR PLAN ANALYSIS - DOOR CLASSIFICATION IN
FLOOR PLANS AND A SURVEY ON EXISTING DATASETS

Abstract

Floor plan interpretation and reconstruction is crucial to enable the transformation of drawings to 3D
models or different digital formats. It has recently taken advantage of neural-based architectures,
especially in the semantic segmentation field. These techniques perform better than traditional methods,
but the results depend mainly on the data used to train the networks, which is often crafted for the specific
task being performed, making it hard to reuse for different purposes. In this paper, we conduct a literature
survey on the existing datasets for floor plan analysis, and we explore how information regarding door
placement and orientation can be recovered without having to change the initial data or model. We propose
a two-step recognition method based on image segmentation followed by classification of cropped zones
to allow data augmentation during training. In the process, we generate a dataset consisting of 35000
annotated door images extracted from an existing dataset.
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ABSTRACT

Floor plan interpretation and reconstruction is crucial to enable the transformation of drawings to 3D
models or different digital formats. It has recently taken advantage of neural-based architectures,
especially in the semantic segmentation field. These techniques perform better than traditional
methods, but the results depend mainly on the data used to train the networks, which is often crafted
for the specific task being performed, making it hard to reuse for different purposes. In this paper,
we conduct a literature survey on the existing datasets for floor plan analysis, and we explore how
information regarding door placement and orientation can be recovered without having to change the
initial data or model. We propose a two-step recognition method based on image segmentation
followed by classification of cropped zones to allow data augmentation during training. In the process,
we generate a dataset consisting of 35000 annotated door images extracted from an existing dataset.

Keywords: Floor Plan Analysis, Data Engineering, Machine Learning, Neural Networks, Dataset
Survey.
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1. INTRODUCTION

Floor plan interpretation and reconstruction have been a field of research for many years.
Often, the goal was to enable the conversion of hand-made floor plan drawings to modern formats
used in Computer-Aided Design (CAD). Compared to the traditional paper-based practices,
having these models in digital formats is advantageous in terms of storage and sustainability.
Furthermore, the conversion also enables the creation of 3D models from existing floor plans,
making it possible to bring existing building designs into digital spaces such as the metaverse.

Initially, floor plan interpretation was performed using low-level image processing
techniques and hand-crafted rules. By taking advantage of design conventions that dictate how
floor plans should be represented, e.g., using thick lines for walls and thin lines for other elements,
a common approach was to take an input image and separate the elements depending on line
thickness (Dosch et al., 2000; Macé et al., 2020; Ahmed et al., 2012). Other image processing
techniques were also used, such as the employment of the Hough Transform (Macé et al. 2010) to
extract lines from the drawings. Then, symbols could be recognized using traditional recognition
methods, such as, subgraph isomorphism (Llados, Marti and Villanueva, 2001).

More recently, image classification and segmentation have been dominated by deep-
learning-based approaches, especially with Convolutional Neural Networks and Vision
Transformers. These methods have been shown to perform and generalize better than traditional
approaches based on hand-crafted rules. However, they also have disadvantages. The first
drawback is the large amount of annotated data necessary to train a deep-learning model. As the
performance of these models depends mainly on the data that are fed onto them, the data must be
carefully annotated in large quantities, which is time consuming. Unfortunately, floor plan data is
not as widely available as data for other tasks such as image classification, which has well-
established benchmarking datasets, e.g., ImageNet (Deng et al., 2009). Not only is there a lack of
benchmarking datasets for floor plan interpretation, but the available datasets also do not follow
consistent annotation conventions. The annotations come as a necessity for each individual task,
instead of a generalized description of the images. For example, door annotations usually only
comprise an opening instead of the whole door symbol, as authors usually only target structural
reconstruction. This can be seen in Figure 1.

Fig.1: Ground truth annotation of a floor plan image. The annotation of the doors does not include the
door swing area. Example adapted from (Lv et al., 2021).

More recent works (Fan et al., 2021; Simonsen et al., 2021; Song and Yu, 2021) have also
explored the use of Graph Neural Networks (GNNs) for the classification of floor plan images or
CAD drawings. These, unlike raster-based methods, can retrieve the segments that make up each
component without the loss of information caused by methods based on convolution and pooling.
Nonetheless, GNNs are often more resource intensive than raster-based methods.
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In this paper, we focus on recovering the door type information lost after applying
segmentation models. Due to the importance of data on these methods, in the next section we
present a literature survey on the available datasets. Given that door classification depends on
orientation, we propose a method that is invariant to geometric transformations, and we create a
dataset consisting of 35000 annotated door symbols extracted from CubiCasa5K (Karlevo et al.,
2019). Our code, in the form of a CubiCasa5K GitHub fork, is made publicly available to serve as
a basis for future developments.!

2. LITERATURE REVIEW ON AVAILABLE DATASETS

Deep learning techniques require large amounts of data to perform well. In this section, we
present a literature review on the most relevant floor plan datasets, which are summarized in Table
number 1.

The CVC-FP (Heras et al., 2015) is one of the first datasets of floor plans. It consists of 122
real floor plan images divided into 4 categories depending on their origin and style. The elements
are encoded with polygons in SVG format, which include walls, doors, windows, parking doors,
and separations. Besides the visual elements, relationships between objects are also encoded, such
as neighboring rooms and incident elements.

With the objective of aligning floor plans with in-house photos, Liu et al. (2015) introduce
Rent3D, consisting of 215 floor plans and 1570 photos. The floor plans contain an annotated real-
world scale, rooms and their respective types, walls, doors, windows, axis-aligned bounding boxes
for icons, and relationships between rooms. For the image alignment task, the photos are each
assigned to room elements. This dataset was recently extended by Vidanapathirana et al. (2021),
creating the Rent3D++ dataset. This version does not add any images, but fixes and adds some
categories and relationships between elements. The annotations are encoded in JSON files
describing the different elements and CSV files containing the assignment of photos to rooms.
Furthermore, the authors also introduce a dataset of room surface textures.

Dodge, Xu and Stenger (2017) introduce the R-FP dataset.” This dataset consists of 500
floorplan images. The ground truth only includes the wall segmentation, but a subset was
annotated to perform object detection.

Liuetal. (2017), in their research, collected and annotated 870 images from the LIFEFULL
HOME'S dataset.’ The ground truths are encoded in text files describing the rooms, walls, doors,
and some objects, which are all described by rectangles. While rooms are classified depending on
their type, this dataset makes no distinction between doors and windows, which are distinguished
later using hand-crafted rules. However, only the annotations are available.

Zeng et al. (2019) introduce two datasets, R2V and R3D, for floor plan image recognition
using deep learning. The R2V dataset consists of the pixel-wise annotation of 815 images from
the dataset in Raster-to-Vector (Liu et al., 2017). Similarly, R3D is the pixel-wise annotation of
the Rent3D (Liu et al., 2015) dataset with 18 additional images. The pixel-wise classifications
include wall, door, window, and room-type segmentation.

H. Kim, S. Kim and Yu (2021) propose a method for recovering spatial information in large
floor plan images. The authors introduce a dataset consisting of 230 floor plan images from the
Seoul National University (SNU). For the annotations, they use polygon boundaries for walls,
doors, windows, staircases, and elevators. The dataset is available upon request to the
corresponding author.

Wu et al. (2019) focus on generating house interior plans given a building boundary. They
introduce the RPLAN dataset consisting of over 80000 pixel-annotated images from real houses.
The annotations include room types and distinguishes between interior and exterior walls as well

!https://github.com/joaocmd/CubiCasabk
2 https://rit.rakuten.com/data_release/, 2022/04/03.
3 https://www.nii.ac.jp/dsc/idr/en/lifull/, 2022/04/03.
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as between main door and remaining doors. The authors also provide a toolbox to interact with
the dataset; however, the original images are not publicly available.

CubiCasa5K (Karlevo et al., 2019) is a publicly available dataset, containing 5000
annotated floor plan images. Each raster image is associated with an SVG file that contains the
geometric and semantic annotations of more than 80 object classes. The images are divided into 3
categories depending on their style, but there is a large amount of variation even within each
category.

Lu et al. (2021) introduce RuralHomeData, which they use for floor plan understanding.
This dataset includes the segmentation of 800 real-world floor plans of rural homes. Lv et al.
(2021) also propose a system for converting raster floor plan images to a vector format, using their
RFP (Residential Floor Plan) dataset, which is made up of 7000 images retrieved from the Internet.
The annotations contain the segmentation of walls, doors, windows, and room types. Objects,
scales, and text elements are also annotated, as well as doors and window openings. As far as we
know, these two last datasets are not publicly available.

Simonsen et al. (2021) follow the newer graph-based approaches and propose a method to
recognize doors in plans directly in DXF files. The authors introduce the Repository of Unique
Buildings (RUB), collecting 81 floor plans in the DXF format. The files are used to generate two
datasets, an image-based one containing the bounding box of the door elements and a graph-based
one with node-wise classification.

The FloorPlanCAD (Fan et al., 2021) is another dataset of vector CAD drawings. As of
May 2022, it contains 15663 drawings. The drawings are provided in SVG and PNG formats,
where the elements are segmented and classified primitive-wise into 60 classes. However, private
information that could identify the buildings was removed from the floor plans, and the plans are
cut into squared blocks, where only 50% of them are kept. This is not a serious limitation as
research have shown that good model results can be achieved with partitioned inputs (Lu et al.,
2021).

The Systems Evaluation Synthetic Documents (SESYD) (Delalandre et al., 2010) is a public
database with 1000 synthetic vector floor plans. Although the floor plans do not correspond to
real-world buildings, their style is consistent with floor plan images of other datasets. The
annotations are encoded in XML files with axis-aligned bounding boxes identifying the symbols,
as well as some information regarding their orientation. The symbols include common objects,
doors, and windows.

The FPLAN-POLY (Rusifiol, Borras and Lladés, 2010) dataset contains 42 floor plans in
the DXF format that have been vectorized from raster images. The dataset is public and aims to
provide a framework for evaluating symbol spotting. Thus, the annotations correspond to labels
assigned to the convex hull of the symbols.

The Repository of Building Plans (ROBIN) (Sharma et al., 2017) is a public dataset
developed for floor plan retrieval tasks. It contains 510 floor plan images, each classified by its
number of rooms and overall building shape. Another version called ROBIN++ is also available,
consisting of the same floor plans but in a roughly sketched style.

The Building Plan Repository for Image Description Generation (BRIDGE) (Goyal et al.,
2019) contains over 13000 floor plan images, including some that are present in other public
datasets such as SESYD (Delalandre et al., 2010) and ROBIN (Sharma et al., 2017). The dataset
aims to support tasks such as symbol spotting, caption generation, and description synthesis. As
such, the annotations include bounding boxes and labels for the symbols, and free-text captions
for parts of the images.

As we have seen in most of the datasets, the annotations vary largely, which is a challenge
for accurate and complete reconstruction. Specifically, we explore the problem of correctly
identifying door types and their orientation, which is often disregarded in the annotated data. In
the next section, we cover how we define a convention for door classification and how we can
make use of the available datasets to build a classifier.

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/6
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Table 1. Summary of datasets covered in Section 2. v* indicates that the dataset is available
through an application and v** that only the annotations are available.

Dataset Size Content Public

CVC-FP (Heras et al., 2015) 122 Obijects, structural elements, V4
relationships

Rent3D++ (Vidanapathirana et al., 2021) | 215 Objects, structural elements, J*
images, textures

R-FP (Dodge, Xu and Stenger, 2017) 500 Wall pixel segmentation, J*
objects

Raster-to-Vector (Liu et al., 2017) 870 Room type, walls, openings, Nbaia
objects

R2V (Zeng et al., 2019) 815 Room type, walls, openings J**
pixel segmentation

R3D (Zeng et al., 2019) 232 Room type, walls, openings v
pixel segmentation

SNU (H. Kim, S. Kim and Yu, 2021) 230 Walls, doors, windows, stairs, | **
elevators

RPLAN (Wu et al., 2019) 80000+ | Room type, walls, openings JE*
pixel segmentation

CubiCasa5K (Kalervo et al., 2019) 5000 Obijects, structural elements, V4
room types

RuralHomeData (Lu et al., 2021) 800 Room type, walls, openings X
pixel segmentation

RFP (Lv et al., 2021) 7000 Room type, walls, doors, X
windows, objects, scales, text

RUB (Simonsen et al., 2021) 81 Labeled CAD doors v

FloorPlanCAD (Fan et al., 2021) 15663 CAD primitive-wise v
segmentation

SESYD (Delalandre et al., 2010) 1000 Obijects, windows, doors v

FPLAN-POLY (Rusifiol, Borras and 42 Annotated objects’ convex v

Llados, 2010) hulls

ROBIN (Sharma et al., 2017) 1020 Floor plan shape/type v
classification

BRIDGE (Goyal et al., 2019) 13000+ | Objects, room and building v
captions

3. DESCRIBING DOORS

Finding a method to describe doors is a challenging problem as it depends on orientation
and, thus, on the point of view of the observer. In this section, we propose a solution to that
problem.

First, we observe how every door can be defined by its two endpoints: S and E (Start and
End). Then, the door symbols are described according to the position of the door axis relative to

Published by Digital Commons @ BAU, 2023
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these two points. Visually, this can be thought of as moving the door so that it sits on top of the x
axis on the Cartesian plane with S to the left of the y axis and E to the right of it. Then, the Left,
Right, Forward, and Reverse labels depend on which quadrant the door opens to. This rationale is
illustrated in Figure 2.

Left Forward (LF} g Y Right Forward (RF)

0
E
®
) [ : :
-t o+
.S
Left Reverse (LR} Right Reverse {RR)

Fig.2: Process to describe a door symbol. S and E are placed on top of the x axis so that S is on the left.
The quadrant of point O determines the door classification. This example corresponds to a Left-Forward
(LF) door.

In addition to normal swing doors, we also describe other related symbols. Some swing
doors can open in both directions and, sometimes, the door axis changes depending on the opening
direction. For that reason, we define two door axes for these doors, one for each direction. Double
doors consist of two swing doors that open in a single direction, where one has an axis on the left
and the other on the right. Thus, these doors are described by their opening direction. Other types
of doors such as sliding doors and roll up doors are also given a label, but we do not assign any
specific information regarding opening direction. Nonetheless, the same ideas can be applied to
classify them if that information is needed, as well as to classify other elements such as windows.

The following sections use these concepts to create a dataset and build a classifier capable
of identifying door types in floor plan images.

4. DATASET DESCRIPTION AND GENERATION

To address the problem of recovering door information using the available data of previous
works, we created a dataset based on the label description elaborated in the previous section. The
resulting dataset consists of 35000 door images, varying in resolution and aspect ratio.

To abide by the previous description, we first define a total ordering of all coordinates, from
the bottom left corner to the upper right corner. If two points are at the same value on the x axis,
the first point is the one with the smallest y value. That is, let P, = (x1,y1) and P, = (x3,y,)
then:

PL< P,e x1 < XV (x1= XA Y1 < Y3) (1)

We use this total order to define each door by its two endpoints: S and E (start and end),
where S < E. The imposed order is not necessary to describe a door symbol, but it is necessary to
guarantee consistency in annotation across all symbols and images.

By applying this total order, we get the final labels which are illustrated in Figure 3.
However, when we consider how the images are labeled, the dependency on a total order
introduces a problem. Notice how, if point 7 moved right under point 6, their order would change
and so would the classification of the doors between them, as the segment would be like the
leftmost case. For this reason, these labels cannot be used if the input images are to be rotated
during the training process, which is a common data augmentation technique. As a solution, the
doors can be given a general class during segmentation and the specific class can be retrieved later
by running a classifier on each isolated door symbol. This is our rationale for performing door

https://digitalcommons.bau.edu.lb/apj/vol28/iss3/6
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orientation classification after segmentation, instead of trying to perform both at once during the
segmentation.

(2)
dF e
A

d

Fig.3: Door labels in different orientations. The characters mean “(L)eft”, “(R)ight”, “(F)orward”,
“(R)everse”, and are combined to form 4 different classes. The numbers in the points correspond to their
index considering the ordering criteria introduced in this section.

To create our data, we apply this process to the images in the CubiCasa5K (Karlevo et al.,
2019) dataset. In that dataset, the annotations are encoded in SVG files, which were explored to
extract the new images. The authors of CubiCasa5K use the SVG id attribute to classify each
element; however, they included additional information in other fields. Namely, the class attribute
identifies the type of door, of which we found: Swing Beside, Swing Opposite, Slide, ParallelSlide,
RollUp, Zfold, and None.

The Swing Beside class is used for normal swing doors. We extract S and E, the start and
end points, respectively, from the SVG element. The points are sorted according to the previously
defined criteria, attending to the fact that image coordinates on the y axis are reversed. The
representation of swing doors in the SVG files includes an arc, which we use to find the point
reached by the door when fully open, which we will refer to as 0. By calculating the distance
between O and S and between O and E, we assign the label “L(eft)” if O is closest to S, and
“R(ight)” otherwise. To assign the label “F(orward)” or “R(everse)”, we must find if O sits above

or below the SE segment, which can be done through the cross product between SE and SO, after
setting the z value of both vectors to zero, and then looking at the sign of the resulting z
component to identify the door facing direction. The four possible scenarios are shown in Figure

4.
O O

S¢———0E Se—oE
S&——0E S¢—9E

O O

Fig.4: Possible scenarios for forward/reverse classification.
The sign of the cross product is positive on the two top
examples and negative on the bottom examples.
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The other classifications build on the same concepts. Double doors are also annotated as
Swing Beside, but have two arcs instead of one. In that case, we perform the forward/reverse
classification on one of the arcs and classify them as double doors with the given direction.

The Swing Opposite doors consist of single doors that swing in both directions. For these,
we perform left/right classification for both arcs. To guarantee consistency, we start by labeling
the forward arc and only then the reverse one. Figures 5¢ and 5d show two examples of such
classes. As we have a defined order for classifying this type of doors, we can, for example,
abbreviate “RF-LR” into “RL” and “LF-LR” into “LL”.

Finally, for the remaining classes, we just use the class attribute directly. The final images
are extracted by rotating the original images so that their corresponding walls are horizontal and
then cropped to our region of interest.

We have, until this point, described how the data is extracted. We now focus on how the
data is grouped and augmented. The data is split into a train set, a validation set, and a test set,
according to the original floor plan images dataset. The images on each set correspond to the door
symbols extracted from the corresponding floor plan images. As the floor plans in CubiCasa5K
(Karlevo et al., 2019) are varied in style, the resulting dataset shares that same feature, and the
images correspond to elements found in real floor plans with different surrounding contexts and
noise.

Our defined classes allow us to use the same image for different classes. For example, a
normal swing door with the label “LF” can be mirrored horizontally to create an “RF” image,
mirrored vertically to create a “LR” image, and mirrored in both directions to create a “RR” image.
The same is applicable to Swing Opposite doors, where “LL” can be transformed into an “RR”
image, and “LR” into an “RL” image. Furthermore, by vertically mirroring an “LL” example, a
different “LL” example is created, doubling the number of examples. For the other classes in which
we did not consider any orientation, those can be mirrored four times to generate examples with a
slightly different appearance. This, in turn, can be used to balance the number of examples for
each class.

Example images can be seen in Figure 5. Dataset statistics are summarized in Figure 6,
where we can see that single doors are the most common by a large margin, and folding doors are

rarely used.
£ 4 3
g
=t z  F=—F I i =t
| - . l
m A : S p
= QO -y, g
(a) Single-RIF (b) Single-LR  (c) Opposite-RL (d) Opposite-LL  (e) Double-R (f) Slide

Fig.5: Examples of our labeled images. Each caption corresponds to the given image class.
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HTrain WValidation Test W Train (Aug) mValidation (Aug) Test (Aug)

Fig.6: Number of examples for each label on the original and augmented datasets.

5. APPLICATION AND EVALUATION

The approach described in the previous section was developed to allow us to train a
classifier for door symbols, as that information is lost during the segmentation process. In this
section, we describe how we can combine both the segmentation and the classification processes.

We use the data generated in the previous section, augmenting all but the single swing doors
as those largely overwhelm the other classes, and group all sliding doors into a single class. For
our classifier, we chose to use a pre-trained ConvNeXt-Tiny (Liu etal., 2022) due to its small size,
simple architecture, and good performance. We perform transfer learning on the generated data,
using normal data augmentation techniques such as color shifting and geometric transformations.

The model achieves 90.7% overall accuracy on the test set. As we can see from Figure 7, it
struggles with the distinction of the slide and none classes, having achieved only 66.8% accuracy
on the none class by wrongly classifying most of the remaining as slide. However, we observe that
these examples are also hard for a human to categorize, as the none class was used for wall
openings, but other strange cases are present, such as crossed-out symbols or symbols with no
clear category that could be easily confused. In most buildings, simple swing doors are used, and
the model achieves excellent results for those, with an average of 97.7% accuracy and 94.6%
precision for these classes.
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Fig.7: Confusion matrix of the trained model on the augmented test set.

We then integrate our classifier into a general recognition process, which is shown in Figure
8. Starting with the original image, we extract a pixel-wise segmentation. We use the model
provided in the CubiCasabK repository. The doors can be retrieved by finding the contours of the
wall openings and approximating them with a rotated rectangle, then the rectangle is expanded so
that it is able to fit any type of door. The start and endpoints are extracted from the rectangles by
considering their longest sides. Then, similarly to the dataset generation, the points are ordered to
maintain consistency in the image classes.

Fig.8: General process for door classification. The doors are recognized during segmentation, but the
semantics are lost. We extract the zone where the door might be and use a classifier to recover that
information. Floor plan image adapted from Lv et al.’s (2021) work.
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In Figure 9, we see an example of our recognition process in an image from the CubiCasa5K
(Karlevo et al., 2019) dataset. The image is part of the dataset's test set and, as such, the door
symbols in the image were not used during the door classifier training. From the image, we can
see that the only misclassified element was due to a segmentation error which considered only one
door instead of two. Right above the misclassified door is a correctly classified element, as the
smaller door was not detected by the segmentation network. For reference, we used the model
proposed by Karlevo et al. (2019). Considering the segmentation error, the door classification
model makes a reasonable prediction.

453 o T T3 (72 )

Fig.9: Door recognition results on an example image. In red, a misclassified door.

6. CONCLUSION AND FUTURE WORK

In this paper, we identified a drawback of the use of pixel-segmentation approaches in the
analysis of floor plan images, namely, the information loss that happens regarding door placement
and orientation. We proposed a method to classify doors present in floor plans, and a method to
gather the necessary data to do so. To support this task, we performed a survey of the datasets that
have been used for floor plan analysis.

One drawback of our approach is the need for a two-step classification process. It can be of
interest to pursue a classification that can be inferred directly during the semantic segmentation
process while still allowing data augmentation techniques to be used during model training. In this
paper, we focused on the extraction of semantic content for swinging doors. For future work, we
plan to apply the same approaches to the recognition of other elements such as sliding doors, roll
up doors, and windows.
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